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The Beevers±Lipson procedure was developed as an economical evaluation of

Fourier maps in two- and three-dimensional space. Straightforward general-

ization of this procedure towards a transformation in n-dimensional space would

lead to n nested loops over the n coordinates, respectively, and different

computer code is required for each dimension. An algorithm is proposed based

on the generalization of the Beevers±Lipson procedure towards transforms in

n-dimensional space that contains the dimension as a variable and that results in

a single piece of computer code for arbitrary dimensions. The computational

complexity is found to scale as N log�N�, where N is the number of pixels in the

map, and it is independent of the dimension of the transform. This procedure

will ®nd applications in the evaluation of Fourier maps of quasicrystals and other

aperiodic crystals, and in the maximum-entropy method for aperiodic crystals.

1. Introduction

Numerical evaluation of Fourier transforms is an important

tool in crystallography. It includes the computation of various

types of Fourier map from experimental diffraction data and

the generation of a set of calculated structure factors from an

electron-density function as part of the maximum-entropy

method.

For crystals with three-dimensional (3D) translational

symmetry, the transform is three-dimensional. Aperiodic

crystals lack 3D translational symmetry. The structures of all

types of aperiodic crystal (quasicrystals, incommensurately

modulated structures and incommensurate composite crys-

tals) can be characterized by a periodic density function in

n-dimensional (nD) space with n � 4 (van Smaalen, 1995).

The crystallographic study of aperiodic crystals thus requires

Fourier transforms in nD space (Dusek & Petricek, 1998).

An ef®cient algorithm for a multidimensional Fourier

transform is provided by the Beevers±Lipson method when it

is combined with a 1D fast Fourier transform (FFT) (Immirzi,

1976). Originally, it was developed for the computation of the

electron density from the structure factors of 2D and 3D

periodic crystals. The usual implementation explicitly employs

the 3D nature of the transform (Bricogne, 1996). A straight-

forward generalization towards more than three dimensions

is possible, but it requires seperate computer code for each

dimension.

For nD crystallography, a computer program is only avail-

able for transforms up to n � 6 (Dusek & Petricek, 1998).

More than six dimensions are required for several modulated

crystals [e.g. �-U between 38 and 43 K (Walker, 1986; van

Smaalen & George, 1987) and (TaSe4)2I in its multi-

dimensional charge-density-wave state (Lorenzo et al., 1993)

require n � 7] and for the modulated icosahedral quasicrystal

AlCuFe (n � 12) (Perez-Mato & Elcoro, 1994).

In this contribution, we describe a generalization of the

Beevers±Lipson algorithm towards more than three dimen-

sions, which results in a single piece of computer code that can

handle transforms of an arbitrary number of dimensions.

2. The n-dimensional Fourier transform

The problem is considered of the discrete Fourier transform in

nD space. To this end, the continuous electron density in the

nD unit cell is discretized on a symmetry-adapted grid of

Npix � N1 � . . .� Nn �1�

pixels (Fig. 1). The origin of the unit cell is chosen to coincide

with the pixel �0; . . . ; 0�. The coordinates of the pixels are

taken along the basis vectors of the unit cell and the shape of

each voxel is that of the Wigner±Seitz cell of the direct lattice

in nD space.

The structure factor of an aperiodic crystal (n> 3) or a

periodic crystal (n � 3) is de®ned as the Fourier transform of

the electron density of one nD unit cell (Janssen et al., 1992;

van Smaalen, 1995):

F�H� � R1
0

dx1 . . .
R1
0

dxn �s�xs� exp�2�iH � xs�; �2�



where the scattering vectors in nD reciprocal space are

de®ned by

H � h1a�1 � . . .� hna�n: �3�
Position vectors in nD direct space are de®ned by their

coordinates �xs1; . . . ; xsn� with respect to the basis vectors of

the nD direct lattice:

xs � xs1a1 � . . .� xsnan: �4�
�s�xs� is the generalized electron density in nD space and it is

periodic in each of its n arguments. For n � 3, it is equal to the

real electron density in the crystal. For n � 4, the electron

density in real space follows as the 3D section of the gener-

alized electron density, perpendicular to the �nÿ 3� additional

coordinates (van Smaalen, 1995).

The discretized electron-density function is de®ned by the

values of �s�xs� on the grid of equation (1):

�k � �s�xs�k��; �5�
with the coordinates of pixel �i1; . . . ; in� given by

xs�k� � �i1=N1; . . . ; in=Nn�: �6�
Each pixel is identi®ed by a single number k, which is de®ned

below. With these de®nitions, and expanding the exponential

function, the discrete Fourier transform is obtained as

(Bricogne, 1996)

F�H� � PNnÿ1

in�0

exp�2�ihnin=Nn�

� P�Nnÿ1�ÿ1

inÿ1�0

exp�2�ihnÿ1inÿ1=Nnÿ1� � . . .

� PN1ÿ1

i1�0

exp�2�ih1i1=N1��s�i1=N1; . . . ; in=Nn�: �7�

Equation (7) forms the basis for the numerical evaluation of

the structure factors from a given electron-density function.

With a similar discretization of the Patterson function or other

functions de®ned on the unit cell, equation (7) forms the basis

for the computation of any Fourier transform that is relevant

in nD crystallography.

3. The n-dimensional algorithm

The Beevers±Lipson procedure is based on the observation

that the transform of one of the n coordinates is independent

of the transform of the other coordinates, as is made explicit

by the form of equation (7). For each of the N2 � . . .� Nn

coordinates �0; i2; . . . ; in�, the ®rst coordinate of �s is trans-

formed from i1 space towards h1 space by a 1D Fourier

transform. The resulting function is transformed from i2 space

towards h2 space for each of the coordinates �h1; 0; i3; . . . ; in�.
This process is repeated until the nth coordinate is trans-

formed and F�H� is obtained.

Direct implementation of this procedure results in

computer code that is dependent on the number of dimension

n. Also, as is suggested by equation (7), the use of an

n-dimensional array to store the values �k and F�H� will make

the code dependent on n. These problems are overcome if the

pixels are uniquely identi®ed by a single integer k that runs

from 0 to Npix ÿ 1 [equation (1)] and that is used to assign the

values of �k to the elements of a 1D array.

De®ne k by

k � i1 � i2 N1 � i3 N1N2 � . . .� in N1 . . . Nnÿ1: �8�
For the transformation of coordinate j �1 � j � n�, a total

number of

Pj �
Qn
l�1
l 6�j

Nl �9�

1D Fourier transforms have to be calculated. To de®ne the

values of k involved in each of these 1D Fourier transforms,

the following sets of numbers are required:

Sj �
Qn

l�j�1

Nl �10�

sj �
Qjÿ1

l�1

Nl �11�

�j �
Qj

l�1

Nl �12�

for j � 1; . . . ; n. Note that Pj � Sjsj for each j. The number of

large steps �Sj� with step size �j and the number of small steps

�sj� with step size 1 together de®ne the values of k that indicate

the ®rst elements �k involved in the 1D transforms according

to

ks � iS�j � is �13�
for iS � 0; . . . ; Sj ÿ 1 and is � 0; . . . ; sj ÿ 1. Each 1D trans-

form involves the Nj elements �k with k values de®ned by

k � ks � ijsj �14�
for ij � 0; . . . ;Nj ÿ 1.

Equations (8)±(14) form the basis for a modi®ed Beevers±

Lipson algorithm:

(i) perform the following operations for each j, starting with

j � 1 and ending with j � n;

(ii) cycle over the large steps;

(iii) cycle over the small steps;
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Figure 1
The symmetry-adapted grid on a hexagonal unit cell. The voxels have the
shape of a regular hexagon.
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(iv) compute the 1D Fourier transform of the elements

de®ned in equation (14).

It follows that the Beevers±Lipson algorithm for different n

has been condensed into a single algorithm that contains n as

one of the variables. This has been made possible by explicitly

addressing the Npix pixels by a single integer variable [equa-

tion (8)].

4. Results and discussion

The Beevers±Lipson procedure leads to a reduction of the

number of operations that has to be performed as compared to

the straightforward evaluation of the multidimensional

Fourier factor. The direct computation of the Fourier trans-

form requires �NpixNref� Fourier factors to be evaluated, where

Nref is the number of Fourier coef®cients that need to be

calculated. For each j 2 f1; . . . ; ng, the Beevers±Lipson

procedure requires Npix=Nj 1D Fourier transforms, each of

which involves Nj log�Nj� evaluations of the Fourier factor.

The computational complexity of the Beevers±Lipson proce-

dure is thus found to scale as

Npix log�Npix�: �15�
Compared to the straightforward evaluation of the Fourier

transform, the Beevers±Lipson procedure leads to a reduction

of the number of operations by a factor of the order of

Nref=log�Npix�: �16�
It is noticed that equations (15) and (16) are valid exactly, as

long as the estimate N log N for the computational complexity

of a 1D FFT is valid. In particular, the Beevers±Lipson

procedure propagates the N log N behaviour of the 1D FFT

towards the whole map, independent of the number of

dimensions. It follows that the Beevers±Lipson approach leads

to a larger reduction of the number of operations with

increasing size of the problem.

The modi®ed Beevers±Lipson algorithm has been incor-

porated into a Fortran-90 subroutine, which will be part of a

computer program for the maximum-entropy method in nD

space. An outline of this routine is given in Fig. 2. The actual

computer program was used for a series of test calculations on

a SGI Octane computer with ample RAM to retain all arrays

in memory, and with a 175 MHz R10000 CPU. The time

required for the transform is found to scale with Npix log�Npix�
in accordance with (15) (Table 1). The dependence on the

dimension n of the time required for the transformation can be

explained from the fact that the same value of Npix leads to

much smaller Nj when n is increased and that the computa-

tional complexity of the 1D transform is greater than

Nj log�Nj� when Nj is small.

In conclusion, we have derived an algoritm based on the

Beevers±Lipson procedure that leads to a piece of computer

code applicable to Fourier transforms in arbitrary dimensions.

The scaling law of the computational complexity [equation

(15)] is shown to follow the theoretical prediction. This

procedure will ®nd applications in crystallographic studies of

quasicrystals and other aperiodic crystals.

Financial support was obtained from the German Science

Foundation (DFG) and from the Fonds der chemischen

Industrie.

References

Bricogne, G. (1996). International Tables for Crystallography, Vol. B,
edited by U. Shmueli, pp. 23±106. Dordrecht: Kluwer Academic
Publishers.

Dusek, M. & Petricek, V. (1998). Proceedings of the International
Conference on Aperiodic Crystals, APERIODIC '97, edited by
M. de Boissieu, J.-L. Verger-Gaugry & R. Currat, pp. 95±99.
Singapore: World Scienti®c.

Figure 2
Outline for a computer program for the Beevers±Lipson method in
arbitrary dimensions.
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